Муниципальное автономное общеобразовательное учреждение города Иркутска средняя общеобразовательная школа №69

Рабочая программа учебного предмета **АСТРОНОМИЯ**

для 10-11 классов

срок реализации программы: 2 года

Составители: Сучкова Елена Георгиевна, учитель физики МАОУ г. Иркутска СОШ №69, высшей квалификационной категории; Широколобова Ирина Анатольевна, учитель физики МАОУ г. Иркутска СОШ №69, первая квалификационной категории; Рабочая программа по астрономии для 10-11 классов разработана на основе требований к планируемым результатам освоения основной образовательной программы среднего основного образования МАОУ г.Иркутска СОШ №69

Место учебного предмета «Астрономия» в учебном плане – часть учебного плана, формируемая участниками образовательных отношений.

Уровень подготовки учащихся – базовый

Количество часов, отводимых на изучение предмета: 35.

Модель преподавания: 1 ч в неделю в полугодиях 10 и 11 классов.

Планируемые предметные результаты

Выпускник на базовом уровне научится:

- ✓ воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- ✓ объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- ✓ применять звездную карту для поиска на небе определенных созвездий и звезд;
- ✓ описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- ✓ объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- ✓ характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы;
- ✓ описывать характерные особенности природы планет-гигантов, их спутников и колец;
- ✓ характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- ✓ описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- ✓ описывать последствия падения на Землю крупных метеоритов;
- ✓ определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- ✓ определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- ✓ классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва.

Выпускник на базовом уровне получит возможность научиться:

- ✓ формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- ✓ объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- ✓ объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения;
- ✓ описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- ✓ сравнивать модели различных типов звезд с моделью Солнца;
- ✓ объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- ✓ характеризовать основные параметры Галактики (размеры, состав, структура);
- ✓ использовать карту звездного неба для нахождения координат светила;
- ✓ приводить примеры практического использования астрономических знаний о небесных телах и их системах;
- ✓ решать задачи на применение изученных астрономических законов;
- ✓ осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников, ее обработку и представление в разных формах

Содержание курса

Строение и масштабы Вселенной. Какие тела заполняют Вселенную. Каковы их характерные размеры и расстояния между ними. Какие физические условия встречаются в них. Вселенная расширяется. Современные методы наблюдений. Где и как работают самые крупные оптические телескопы. Как астрономы исследуют гамма-излучение Вселенной. Что увидели гравитационно-волновые и нейтринные телескопы.

Астрометрия (5 ч)

Звёздное небо. Созвездия северного полушария. Навигационные звёзды. Движение Солнца по эклиптике. Петлеобразное движение планет. Небесный экватор и небесный меридиан. Экваториальная и горизонтальная система небесных координат. Видимое движение небесных светил. Петлеобразное движение планет, попятное и прямое движение планет. Эклиптика, зодиакальные созвездия. Неравномерное движение Солнца по эклиптике. Движение Луны. Фазы Луны и синодический месяц, условия наступления солнечного и лунного затмений. Причины наступления солнечных затмений. Сарос и предсказания затмений. Время и календарь. Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования. Юлианский и григорианский календари.

Небесная механика (3 ч)

Представления о строении Солнечной системы в античные времена и в средневековье. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Параллакс звёзд и определение расстояния до них, парсек. Открытие И.Кеплером законов движения планет. Открытие закона всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел. Космические скорости. Расчёты первой и второй космической скорости и их физический смысл. Полёт Ю.А. Гагарина вокруг Земли по круговой орбите. Межпланетные перелёты. Понятие оптимальной траектории полёта к планете. Время полёта к планете и даты стартов. Луна и её влияние на Землю. Лунный рельеф и его природа. Приливное взаимодействие между Луной и Землёй. Удаление Луны от Земли и замедление вращения Земли. Прецессия земной оси и предварение равноденствий.

Строение солнечной системы (7 ч)

Современные представления о Солнечной системе. Состав Солнечной системы. Планеты земной группы и планеты-гиганты, их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы. Планета Земля. Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли. Исследования Меркурия, Венеры и Марса, их схожесть с Землёй. Влияние парникового эффекта на климат Земли и Венеры. Есть ли жизнь на Марсе. Эволюция орбит спутников Марса Фобоса и Деймоса. Планеты-гиганты. Физические свойства Юпитера, Сатурна, Урана и Нептуна. Вулканическая деятельность на спутнике Юпитера Ио. Природа колец вокруг планетгигантов. Планеты-карлики и их свойства. Малые тела Солнечной системы. Природа и движение астероидов. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Метеоры и метеориты. Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Астрофизика и звёздная астрономия (7 ч)

Методы астрофизических исследований. Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов, радиоинтерферометры. Солнце. Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Строение солнечной атмосферы. Солнечная активность и её влияние на Землю и биосферу. Внутреннее строение Солнца. Теоретический расчёт температуры в центре Солнца. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца. Определение основных характеристик звёзд: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма "спектральный класс-светимость" звёзд, связь между массой и светимостью звёзд. Внутреннее строение звёзд. Строение звезды главной последовательности. Строение звёзд красных гигантов и сверхгигантов. Строение звёзд белых карликов и предел на их массу – предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры. Двойные, кратные и переменные звёзды. Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Зависимость между светимостью и периодом пульсаций у цефеид. Цефеиды — маяки во Вселенной, по которым

определяют расстояния до далёких скоплений и галактик. Новые и сверхновые звёзды. Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Как взрываются сверхновые звёзды. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика с массой Чандрасекара в составе тесной двойной звезды — вспышка сверхновой І типа. Взрыв массивной звезды в конце своей эволюции — взрыв сверхновой ІІ типа. Наблюдение остатков взрывов сверхновых звёзд. Эволюция звёзд: рождение, жизнь и смерть звёзд. Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд, проверка теории эволюции звёзд.

Млечный Путь (3 ч)

Газ и пыль в Галактике. Образование отражательных туманностей. Причины свечения диффузных туманностей. Концентрация газовых и пылевых туманностей в Галактике. Рассеянные и шаровые звёздные скопления. Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике. Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь с взрывами сверхновых звёзд.

Галактики (3 ч)

Классификация галактик по форме и камертонная диаграмма Хаббла. Свойства спиральных, эллиптических и неправильных галактик. Красное смещение в спектрах галактик и определение расстояния до них. Закон Хаббла. Вращение галактик и тёмная материя в них. Активные галактики и квазары. Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них. Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Строение и эволюция Вселенной (2 ч)

Конечность и бесконечность Вселенной – парадоксы классической космологии. Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней. Расширяющаяся Вселенная. Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной. Модель "горячей Вселенной" и реликтовое излучение. Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной. Реликтовое излучение – излучение, которое осталось во Вселенной от горячего и сверхплотного состояния материи на ранних этапах жизни Вселенной. Наблюдаемые свойства реликтового излучения. Почему необходимо привлечение общей теории относительности для построения модели Вселенной.

Современные проблемы астрономии – 3 ч

Ускоренное расширение Вселенной и тёмная энергия. Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного отталкивания. Тёмная энергия и её влияние на массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания. Обнаружение планет возле других звёзд. Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них. Поиски жизни и разума во Вселенной. Развитие представлений о возникновении и

существовании жизни во Вселенной. Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

Резерв (1 ч)

Тематическое планирование

№ раздела	Название раздела	Количество часов
1	Введение в астрономию	1
2	Астрометрия	5
3	Небесная механика	3
4	Строение Солнечной системы	7
5	Астрофизика и звёздная астрономия	7
6	Млечный путь	3
7	Галактики	3
8	Строение и эволюция Вселенной	2
9	Современные проблемы астрономии	3
	Резерв	1
Всего		35